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NATIONAL ADVISORY COMMITTEE FOR AKRONAUTICS

TECENICY_L NOi_ NO. 1819

THE RESPONSE OF FKESS[rRE MEASURING SYSTEMS

TO 0SCILIATING PRESSURES

By Israel Taback

SUMMARY

A method is presented for calculating the response and lag Jn

pressure measuring system_ subjected to steady-state sinusoidally

varying pressures. The pressure system is assumed to consist of an

inlet restriction, tubing length, and connected instrument volume. The

material presented is limited by the fact that no theoretical method of

predicting the attenuation characteristics of the tubing is given. This

limitation is not severe, however, as this characteristic may be experi-

mentally determined for given tube sizes and pressure frequencies.

Experimental data for some sample systems tested are presented and

show good agreement with calculated values. The results are presented

in such fashion that the qualitative effect of varying the dimensions

of system components is apparent. It is therefore possible, once the

attenuation characteristics of the tube are determined, to design a

system with a required frequency response by a trial-and-error variation

of parameters.

INTRODUCTION

Of major interest in many test installations is the response of

pressure-dlstribution systems to rapidly varying pressures, both where

these pressures must be accurately measured and where unwanted oscilla-

tions must be filtered out or eliminated. When such pressures are

measured, the pressure sensing element is normally installed as close

to the point of measurement as posslble. When this installation is

not feasible, connecting tubing must be employed with the consequent

possibility of errors caused by resonance or attenuation in the tube.

Metho'ds of calculation of the response of pressure systems to small-

amplitude steady-state slnusoidal pressures based upon electromechanlcal

analogies have been previously developed (reference 1), but little use

has been made of these m_thods, both because of the large amount of

tedious calculation necessary for the solution of even simple pressure

systems and because of the lack of information as to whether the

equations were valid for pressure oscillations of large amplitude. This

paper has been prepared to present a more convenient method of calculating

response and lag in pressure systems. The main emphasis has been placed on
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simplifying the necessary equations to the po_t wh_re they can be easily
applied to practical instrumentation problems. The _c:_erial consequently
is in such form that the qualitative effect of var._TJngkhe componentsof
a pressure system is easily visualized.

In support of the theoretical m_thods presen_dj _xperimental data
have been secured on various pressure systems in the frequency range up
to 70 cycles per second. Both the frequency range and pressure systems
tested were chosen as being representative of conditions which would be
encountered in flight and wLud-tunnel installations.

SYMBOLS

A

C

E

f

fo

I

k

Z

L

Pay

r

R

V

Y

Z

go

velocity of propagation, feet per second

attenuation factor, seconds I/2 per foot

capacity, farads

voltage, volts

frequency, cycles per second

tube resonant frequency, cycles per second

current, amperes

ratio of specific heat, Cp/C V

tube length, feet

inductance, henries

mean pressure in tube_ pounds per square fo<_t

pressure difference, pounds per square foot

radius, feet

resistance, ohms

volume_ cubic feet

shunt ad_Littance of tube, foot 5 per pound-second

series impedance, pound-seconds per foot 5

characteristic impedance of tube, pound-seconds per foot5
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(z

k

Day

attenuation constant, 1/feet

propagation constant, radians per foot

wave length, feet

mean density in tube, slugs per cubic foot

coefficient of viscosity, pounds per foot-second

angular frequency, radians per second

Subscripts:

d

r

S

quantity existing at inlet restriction or restriction parameter

quantity existing at instrument or instrument parameter

quantity existing at pressure-system inlet

The measurement of rapidly varying pressures requires in most cases

that a pressure instrument be connected to the measuring point through a

finite length of connecting tube. The tube opening may be restricted by

a connector of smaller opening, either because of aerodynamic consider-

ations or because the response of the measuring system to the oscillating

pressures must be adjusted. In most cases exposing the pressure-

measuring diaphragm to a reference pressure is necessary. This procedure

requires that the diaphragm be installed so that it is exposed to a refer-

ence pressure volume which may be connected by means of tubing to a

reference pressure source. The reference volume and connecting tubing

is hereinafter referred to as the reference pressure system. For the

purpose of the following analysis, it will be considered that: (1) the

response of the instrument may be separately evaluated or is constant

throughout the frequency range, and that (2) deflections of the sensitive

element are sufficiently _ small so that negligible changes in internal

volume occur and no energy is transferred to the reference pressure

systems.

The air column in a tube has mass inertia, elasticity, and can

dissipate energy with its motion; consequently, as is generally known,

wave motion can be propagated along its length. The equations governing

this motion have been previously derived for sm_ll-amplitude pressure

variations (references i and 2) and are exactly similar to the equations

which govern the propagation of electrical waves on transmission lines.

As these equations already have been developed, it is relatively easy
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to describe the behavior of the pressure system in terms of the analogous
electrical system by use of the usual electrical notation (reference 3).
The electrical terms and the equivalent acoustical terms used herein are
shown in the following table:

Electrical
Term Unit

inductance

capacity

resistance

current
voltage

henries

farads

ohms

amperes
volts

Symbol
L

C

R

I
E

E_uivalent acoustical
Tel_n

inertance

volumetric
capacity

flow resistance

volume flow
pressure

Unit,
pound-seconds2 per

foot _'
foot5 per pourld

pound-seconds per
foot5

feet 3 per second
pounds per foot 2

Symbol
L

C

R

Q
P

In acoustical terms (reference 4), the inductance per unit length of line

L = Pa---Xthe capacitance per unit length C - _r2 _nd the resistance
_r2_ kPav'

AP (the latter being dependent _ the type andper unit length R =-_ ....
amplitude of flow).

The behavior of the system can then be defined by the general
equations for a transmission line

where

ES = Ercosh Z_ Z + IrZoslnh_Z

Er
I s = IrCOShZ_Y Z + _o sinh _ Z

Z=R+ J_L

(i)

(2)

The quantity '/ZY is a complex number and may there:Tore be written as

gZk--= _ + J_ (3)

where a is an attenuation constant determined by th,_ decrement in

pressure amplitude per length of tube and _ is a propagation constant

or phase-angle change per unit length of tube as defined by the following

equation:

2_f

: Propagation velocity
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The quantity Zo is designated the characteristic impedanceof the tube

Zo =_= Z_Y_a+_y Y (4)

Equation (i) may be rewritten to give

E S Z o
= cosh_-_ Z + -- sinh_

Er Zr
(5)

Substituting equation (3)'into equation (5) and simplifying by trigono-

metric substitutions gives

+ _sinh2c_ + sin2_Z /tan-l(t_ZcLZ) (6)

Equation (6) defines the ratio of the voltage or pressure amplitude

at the open end of the tube to the amplitude existing at the pressure

capsule. The reciprocal of this ratio is called herein the response of

the system. The right-hand terms in equation (6) are given in polar

coordinates and must be added vectorially at the indicated angles.

Simplified Theory

Characteristics of system having negligible instrument volume.- If
the pressure capsule is sufficiently small, negligible air flow occurs at

the instrument end of the tube, Zr approaches infinity, and equation (1)
reduces to

PS ES _

Pr : Er coshz_ z (7)

PS: (sinh2a_ + cos2_l/2/tan_l(tan _ tanh aZ)
Pr

(8)

Further, if the tube is of sufficiently large diameter, negligible

attenuation of the pressure wave occurs in the tube, a approaches zero,
and equation 8 simplifies to

PS
= cos p_ (9)

Pr
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At resonance frequencies, equation (9) becomeszero and the
Pr

response _ becomes infinite. The following simple relationship can

then be derived for the determination of the resonant frequency :

where

cos = o (lO)

where fo is the resonant frequency of the tube with no attached volume.

As the wave length of a pressure wave is given by the relation fk = a

equation (12) indicates that, at resonance frequencies, the tube length

is an odd multiple of 1/4 wave length.

Figure i is a plot of response and phase angles based on equations (8)

and (9) for simple systems having zero or finite 8ttenuation.

Characteristics of system havin_ an inlet restriction.- In a similar

system having negligible instrument volume so that Ir approaches zero,
the effect of adding a constriction at the tube inlet may be evaluated as

indicated in the following discussion.

For restrictions which are short in length compared to i wave length,

the flow impedance consists of a resistance caused by viscous pressure

losses and an inertance caused by the mass of air in the restriction.

As derived in reference 5,

Zd = Zd _d 2 4 X rd2 + 9
(13)

This impedance causes a pressure loss

ES - ES' -- ISZd (14)

where ES is the applied pressure and ES' is the pressure applied
to the tube past the restriction.

From equations (i) and (2), when Ir equals ___'4_

E$ = E r cosh _ (15)



NACATN No. 1819 7

Er
-- z (16)

IS - Zo

By the substitution of v_lues from equations (15) and (16) into

equation (14),

E S - ES ' Zd

ES, - Zo
(17)

E S Zd
(18)

Equation (18) was derived to secure the ratio of the pressure applied

to the pressure existing lh the tube past the restriction. The magnitude of

the over-all response of the tube and restriction can now be secured by

multiplying the effectiveness of the restriction, as given by equation (18),

by the relation for the tube without the restriction, as given by equation (8).

PS ES ES ' ES

Pr - Er - Er Esr

* _O tanh(_Z * J_Z sinh2_ * cos2_)i/2 /tan-l(tan _Z tanh _)

(19)

The effectiveness of the restriction can be shown to vary with the

applied frequency and the tube characteristics. In order to visualize the

effect of the constriction on the response of the system, equation (18)

may be rewritten by trigonometric substitution

=1+Zo\1+ j  mh Zt  Z]
(20)

At antlresonance frequencies (SZ = O, g, n_),

tan _Z = 0 and equation (20) reduces to

ES Zd

"'o

At res°nance frequencies (8l =2, _ 2)2 '

tan B_ = _ end equation (20) red1_ces to

ES Zd i

_S = i + Zo tanh aZ
(22)
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For the case of a resonant tube tanh _Z << I and therefore it can

be seen from equations (21) and (22) that the resi_iGtion is extremely

effective in reducing large amplitude resonances but has only a negli-

gible effect at antlresonance frequencies.

In the case of a large-diameter tube wherein the attenuation is

negligible, _ approaches zero and equation (19) _duces to

PS ES ( Zd )=Er = 1 cos (23)

Ps Za
: cos _ + _ s_ _ (2_)

"'o

The impedance of a smaLl-diameter constriction is almost a pure

resistance since the viscous forces which cause presm_re losses are much

larger than the inertia forces caused by the Ease of _ir in the constric-

tion. The ratio of the impedances Zd/Z o therefore closely approaches

a real nt_nber and equation (24) can be rewritten irl polar coordinates to

give

When _ -

Ps
Pr -

Zd

Zo - i,

(25)

PS-- : 1 (26)
Pr

A plot of equation (25) is given in figure 2 for two assumed values

of the ratio Zd/Z o. As noted previously, the restriction at the tube

inlet is extremely effective at resonance frequencies but has no effect

upon the response at antiresonance frequencies. The principal difference

between an adjustment to the response of a system b2 m_ans of small-

diameter tubing or an inlet restriction may be clearly seen from a com-

parison of figures ! and 2. Although it is possible_ by use of a large-

diameter tube and a suitable inlet restriction, to secure unit response

over a large frequency range, the use of a sm_ll-diameter tube inherently

causes decreased response at higher frequencies.

Characteristics of pressure systems havin 6 instr_nent volumes.-

Pressure-measurlng instruments which are designed to have uniform response

over a wide range of frequencies are necessarily designed with high-

frequency_ low-deflection-type diaphragms. The ip_trument impegance in

such case is a function only of its vol_netrlc capec!ty and can be written

1 kea_ (27)
Zr = j_c----_: _Vr
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The characteristic impedance of the tube as given by equation (4) is

Y _r2z
(28)

The ratio of these impedances, which appears in equation (6), is

Z o

Z r
Vr _,)2 + (_,)_1/7 tan-l]3

_r2 Z
(29)

For a given tube diameter and length the value of equation (29) depends

directly on the ratio of the volume of the instrument to the total volume

of the tube. Equation (6) may now be altered to include only values of

real quantities and phase angles,

P_S = (sinh2c_, + cos2_)1/2/ tan_l(ta _ _' tanh _,) Vr
Pr + _r2Z

+ (p,)2_ 1/2 (sinh2_, + sj_u2bO1/2/ /tan_l ( tan _,_+/tan-l(_ 1 (30)

t / \tanh o_7,/ /_ \o.J

In the case of a large-diameter tube in which _ approaches zero,
equation (30) reduces to

PS Vr
= pz sin _z (3z)

Pr cos _Z _r2Z

A plot of equation (31) is given in figure 3 for two values of the

V r
ratio _. The plot indicates that the resonant frequency of a pressure

_r2Z

system decreases with an increase in instrument volume. It also shows

that instruments having volumes of the same order of magnitude as the

total tube volume cause a significant decrease in response at higher
frequencies.

At the resonant frequency of the tube with attached instrument

volume, equation (31) may be set equal to zero so that

V r
cos t3Z = _ ,SZ sin 137,

_r 2 Z
(32)
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Then,

Vr cot _Z
F (33)

If values from equations (ii) and (12) are substituted in equation (33),

V r _ fresonancel_ co fo
fresonance

fo

(34)

Equation (34) offers a simple method for estimating t_e lowest resonance

frequency of a tube and volume system. This eguPtion is plotted in

figure 4 so that it is possible, if only the physical dimensions of a

pressure system with negligible tube attenuation are known_ to use this

chart to determine the resonant freguency of the system.

Effect of appreciable instrument deflections and reference pressure

systems on the response of pressure systems.- The armlysis of the response

of a pressure system when the pressure diaphragm is sufficiently deflected

so that it can transmit energy into a reference pressure system is con-

sidered beyond the scope of this work. Although the effect on the response

is small inmost cases, experimental evidence of the character of these
effects is shown herein.

LIMITATIONS OF THEORY

Numerical solutions of the eguations presented herein can be secured

if the parameters 6 and a are known. The value of 6 can be calcu-

lated from the velocities of propagation plotted in figure 5. This

figure is based on the Rayleigh formula for propagation in tubes (refer-

ence 2) and, for ease of computation, upon a velocity of propagation

of lO00 feet per second in free air. Values of _ h_ve been calculated

by various investigators for sound pressure amplltudes; however, it is

difficult to predict its value for large pressure amplitudes since steady-

state laminar flow does not exist in the tube. Reference 6 presents a

semiempirical equation which indicates that the attenuation constant a

varies with the following factors:

(a) Directly as the square root of the applied frequency

(b) Inversely as the square root of the mean density of the fluid

(c) Inversely with the tube diameter
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(d) Directly as the square root of the "effective viscosity. " The
"effective viscosity" is shownto depend upon the Reynolds number of the
flow In the tube, which in turn is directly dependent upon pressure
amplitude and freguency.

The effects of factors (a) and (c) on the values of a have been
checked by the experimental data presented; however, lack of suitable
equipment has nmdeit impossible to generate large-amplltude pressures
at various meandensities to substantiate factors (b) and (d).

The lack of any method for calculating the attenuation constant
directly limits the general application of the preceding equations. An
experimental determination of _ is possible, however, by making
measurementson a simple system (long tube with no restriction and
negligible instrument vollnne) and then applying the experimentally
determined value to the calculation of more complicated systems. For
the range of pressure amplitudes and frequencies covered in thls investi-
gation, values of a have been determined experimentally and the results
are given in the section entitled '_xperimental Investigation. "

It is important to note that in manypractical applications wherein
the prin_ry consideration Is an estimate of resonance and antlresonance
frequencies, sufficient accuracy can be secured by assuming that the
attenuation constant a is negligible. In such cases, the equations
presented for tube systems having zero attenuation can be applied with
conseguent reduction of computation time.

EXPERIMENTALINVESTIGATION

Apparatus and Tests

A schemaof the test setup is given in figure 6. The pressure
source used in these tests consisted of a piston, driven by a variable-
speed electric motor, in a cylinder surrounded by a clearance volume.
Adjustment of pressure amplitude was achieved by varying the clearance
volume or altering the stroke of the crank and connectlng-rod mechanism
driving the piston. Directly connected to the cylinder was a standard
NACAmechanlcal-optical pressure recorder, which was used as a pressure
standard. This instrument consists of a corrugated diaphragm assembly
having an internal volume of 0.2 cubic inch surrounded by a reference
volume of approximately 1.2 cubic inches. Deflections of the diaphragm
are converted by meansof a bell-crank tilting-mlrror llnkageinto
deflections of a record line on a photographic film. The natural
frequency of this instrument was sufficiently hlgh to reguire no correc-
tions for its response. Another connection from the pressure generator
led to the pressure system under test. The pressure systems tested
consisted of various lengths of neoprene pressure tubing varying in

frGn_-Inch to_-pinch inside diameter wlth connected restrictionsdiameter
O ±O
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and volumes. The pressure generator supplied oscillating pressure ampli-

tudes up to + I0 inches of w_ter at frequencies ranging from 0 to

70 cycles per second. Records of the generated pressure as determined by

the reference-pressure cell, pressures existing in the test instrument,

and ---1-second timing marks were all recorded on the same film. The tests
i0

were made in the Flight Instrument Development Section of the Langley
Instrument Research Division.

Results of Amplitude Response Tests

Simple tube system with negligible instrument volume.- Figures 7

and 8 summarize the results of tests made with _:-inch andS-inch-inside-

diameter tubes with applied pressure amplitudes of Z i0 inches of water.

The length of tube, given in wave lengths, is calculated from the

velocity of propagation as given in figure 6 and the relation a/f equals

w_ve length. In figure 7 the response of systems using _-Inch-inslde-
8

diameter tubing is seen to be such that large attenuation of pressure

amplitude occurs in the main portion of the frequency range up to 70 cycles

per second. Figure 8 indicates that the attenuation in T-_g-inch-inslde-

diameter tubes is snmll enough so that, with suitable damping of the

resonance peaks, the response through a largefrequency range can be

made to approximate unity. Tests made on other tube lengths not shown

in these figures fair in well with the plotted cu_<c_.

Based upon figures 7 and 8 and equation (8), the attenuation

constant _ was determ_led for both tube diameters. The attenuation

constant was found to vary with the square root of the applied frequency.

Values of the attenuation factor A are plotted in fdgure 9. The

value of A as calculated from equation (8) is apparently not constant

for the shorter tube lengths_ however, this effect is actually caused

by the finite volume of the pressure capsule. The values of A.

asymptotically approach their true value for the longer tubes since the

attenuation in the tube becomes the determining fac±or in the over-all

response. The values of _ thus determined are as follows:

For _-inch-lnslde-diameter tubes,

= 0.014_

For l_-inch-inside-dlameter tubes,

= 0.0065r_-
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The curves of figures I0 and ii have been calculated on the basis

of the attenuation factor for the _-Inch-lnslde-dlameter tube. The

variation between the calculated response curves for zero instrument

volume and for 0.21 cubic inch instrument volume shows the effect of

the volume of the instrument used (fig. lO). The experimental points
for the lO-foot tube with an instrument volume of O._l cubic Inch

approximate a theoretical curve for a lO-foot tube wlth no volume

attached which has an attenuation constant equal to O.O1. The comparison

shown In figure lO between these experimental points and the theoretical

curve for zero volume indicates that except at resonance frequencies a

relatively large variation In the attenuation factor causes only minor

changes In the general characteristics of the response c_ve.

Tube wlth inlet restriction.-Figure ll illustrates the correlation

between the calculated response curves and the experimental data ±'or a

10-foot tube wlth and without an inlet restriction subjected to

pressure amplitudes of + lO inches of water. The damping restriction,

as previously indicated, is placed at the open tube end. The main effect

of the damper at resonance frequencies and the almost negligible effect

at antlresonance frequencies should be noted on these curves. Inasmuch as

the experimental data for a _6-inch-inside-dlameter, ¼-inch-long connector

seem to correspond more exactly to the calculated values for a connector

of twice this length, the losses in this connector can be assumed to be

larger than those predicted by equation (13). These added losses are

attributed to the inlet and exit losses of the connector and to the fact

that steady laminar flow does not exist in the connector.

Tube wlth appreciable instrument volume.- Figure i0 also indicates

the response to sinusoldal pressure amplitudes of ± i0 inches of water

of a 10-foot length of _-Inch-lnside-diameter tubing with volumes

of 3.05 cubic inches and 6.1 cubic inches added adjacent to the recording

instrument. The correlation between calculated and experimental curves

indicates that although a high percentage accuracy has not been

achieved, good agreement exists insofar as response-curve shape and

attenuation characteristics are concerned. The effect of increasing

the recording instrument volume is seen to be a lowering of the

resonant frequency of the system and a decrease in amplitude of the

recorded pressures throughout most of the frequency range.

Effect of some reference pressure systems on the response character-

istlcs of a pressure system.- When pressure recorders are connected to

both a pressure measuring system and a reference pressure system, appreci-

able interaction and energy transfer may occur, which can alter signlfi-

cantly the response of the entire system. The calculation of the

response of such systems is considered inadvisable since It is necessarily

tedious and the accuracy is questionable. Figure 12 is included as

representative of the interactions which occurred with the c_pst,2e
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employed in these tests in a test setup designed so that the interaction
was very pronounced. Thc variations in the respor_c curves are typical
of coupled systems which maybe encountered in prsctice. The equivalent
pressure and electrical systems are schematically shownin the same
figure. It should be noted that these effects maybe decreased or
eliminated by enlarging the reference volume surroundh_g the measuring
element so that its equD_a!ent electrical capacity becomesextremely
large and approaches a short circuit.

Results of PhaserShift Determination

Figure 13 illustrates the correlation between cslculated and experi-

mental lag curves for i0 feet of_-Inch-inside-diameter tubing with

various added volumes. The response curves of fi_<_urei0 show that the
following general characteristics are commonto the lag curves of figure 13:

(i) The phase angle shifts relatively slowly until a resonance
frequency is reached, at which time the phase changes rapidly through 90° .

(2) The lag remains almost constant at approximately 180° from
frequencies above resonance through the first antlresonance frequency
and then increases to larger values.

(3) The rate of change of lag angle with increasing frequency becomes
more and more linear as the magnitude of the amplitude response at
resonance becomessmaller and smaller.

SampleCalculation

Equation (20) has been presented in such form thst the response and
lag maybe arithmetically calculated. Table 1 indicates the calculations

necessary for the determination of the response of l0 feet of l-_-inch-
inside-diameter tubing with an added volume of 0.61 cubic inch. All
computations are arithmetic except that for column Q , which maybe
done graphically with little labor. The determination of the response
for various other added volumes can be easily madeby recalculating
c ©, @, © only.

CONCLUSIONS

A method has been developed for estimating the d_amlc response of

pressure systems subjected to steady-state oscillating pressures which

can be applied to the design of these systems either to secure good

response over a desired frequency range or to eliminate unwanted
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resonances whenonly a meanpressure level is desired. Although no
method of predicting the attenuation constant of various tubing under

all pressure conditions has been presented, this attenuation constant

may be determined experimentally in a simple tube system and used for

the design of other more complicated systems.

Even in long tubes of small diameter (that is, 20 ft of 1-_-In.-I.D.

tubes), resonances can occur which cannot be ignored in the interpreta-

tion of recorded data. The resonance frequency range for tubes of

approximately this length is the frequency range in which airplane

buffeting may occur and airplanes passing through contiguous atmospheric

gusts may also be subjected to pressure cycles in this rsnge. The

direct interpretation of such recorded data without reference to the

effect of the recording system will lead to erroneous results.

It can be concluded from the material presented that for accurate

dynamic-pressure measurements the first resonant frequency of the

pressure-measurement system should be kept well above the highest

pressure frequency to be measured. This result can usually be accom-

plished only by installing the pressure sensing element as close to the

point of measurement as possible. When such installation is not feasible,

the principles presented in this paper should be applied to the design

of an appropriate pressure system. The errors inherent in such a method

should be mitigated whenever possible by a direct calibration under

conditions of use.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Air Force Base, Va., January 7, 1949
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